

Certificate Path Processing
Implementation Guideline

Version 1.0

JKST IWG 2002

Table of Contents

1 OBJECTIVE & SCOPE... 3

2 CONTENTS... 4

2.1 CERTIFICATE PATH VALIDATION ALGORITHM... 4

2.1.1 INPUTS .. 5
2.1.2 INITIALIZATION ... 6
2.1.3 BASIC CERTIFICATE PROCESSING.. 7
2.1.4 PREPARATION FOR NEXT CERTIFICATE.. 8
2.1.5 WRAP-UP ...11
2.1.6 OUTPUT... 14

2.2 CRL VALIDATION ALGORITHM ... 15
2.2.1 Revocation Inputs ... 16
2.2.2 Initialization and Revocation State Variables ... 16
2.2.3 CRL Processing .. 17

2.3 RESTRICTED CERTIFICATE PATH CONSTRUCTION ALGORITHM......... 19

2.3.1 ASSUMPTIONS..19

2.3.2 CERTIFICATE CHAIN CONSTRUCTION .. 21
2.3.3 RETRIEVAL OF ARL/CRL... 23

2.4 CONSIDERATIONS.. 23

2.4.1 USING VA(VALIDATION AUTHORITY).. 23

3 REFERENCE... 25

1 Objective & Scope

The objective of this Path Processing Implementation Guideline(for short PPIG) is to help the PKI

developers to implement the complicated Certificate Path Processing algorithms well, which are essential

to make the multi PKI domains interoperable each other.

Because the certificate path validation algorithms in RFC 3280 are so complex and difficult that it is

possible for PKI developers to make mistakes in implementing its algorithms.

In IWG member’s hope that all PKI S/Ws output one same result on the certain certificate paths in

interoperable PKI domains, PPIG is developed to minimize any possible mistakes and errors by the PKI

developers at implementation levels.

The procedures of validating certificate paths, so called “Certificate Path Processing”, consists of two

main parts. One is certificate path validation and the other is certificate path construction. In this

guideline, we will describe those two main parts of certificate path processing and some additional

considerations.

For the first part, the certificate path validation algorithm based on the algorithm described in

RFC3280[1] will be covered. According to the algorithms, the conformant implementation must output

the same result for the same inputs. To help such a conformant implementation, this guideline will give

detailed explanations about the algorithm. And this guideline will derive some interoperability

requirements between different PKI domains and will describe some considerations to support the IWG

recommended profiles[2][3].

For the second part, this guideline will include the restricted certificate path construction algorithm with

some environmental assumptions. The certificate path construction procedure depends on many

environmental aspects, such as interoperability model, repository and CRL distribution model. For those

reasons above, it is very difficult to derive a general algorithm for certificate path construction. So, we

have made some assumptions on which the restricted certificate path construction algorithm have been

created.

l Certificate Path Validation Algorithm

In this part, we will describe the algorithm that gives the validity of given certificate path. This

algorithm is fully based on RFC3280. To assist understanding of the algorithm, sample

diagrams and corresponding explanations are added. This guideline will derive some

requirements for the interoperability between different PKI domains and will include IWG

profile considerations based on “Recommendations on Technical Certificate Profile”.

l Certificate Path Construction Algorithm

In this part, we will describe the algorithm o f constructing certificate path for a given certificate.

Constructed certificate path will be the input of above certificate path validation algorithm. It is

difficult to design a general path construction algorithm because path construction depends on

the PKI environment such as interoperability model, repository and CRL distribution method.

The restricted Path Construction algorithm is described with some assumptions of those factors

that could affect the path constructions.

At the end of this guideline, Some considerations for the certificate validation software will be covered.

In this version of the guideline, the considerations for OCSP services will be made.

2 Contents

2.1 Certificate Path Validation Algorithm

The primary goal of path validation is to verify the binding between a subject distinguished name or a

subject alternative name and subject public key, as represented in the end entity certificate, based on the

public key of trust anchor information. The certificate path validation algorithm is a procedure to achieve

above goal for a given certificate path. The following diagram shows the overall procedure of the path

validation algorithm.

Initialization

Process Cert

Start Inputs

Wrap Up

Prepare for
Next Cert

Last Cert

Yes

No

• certificate path of length n
• current date & time
• user-initial-policy-set
• trust anchor info
• initial-policy-mapping-inhibit
• initial-explicit-policy
• initial-any-policy-inhibit

•Success/Failure indication
• If succeeded,
Ø policy info
Ø Public key info of last cert
§ If failed,
Ø Appropriate reason

Stop Outputs

[Figure 1] Certificate Path Validation Flowchart

The diagram shows that the path validation algorithm is composed of four basic steps. At first,

“Initialization” step is performed using “Inputs”. “Basic Certificate Processing” step will be done for each

certificate in the path. For each intermediate certificate “Preparation for Next Certificate” step is

performed and for the final certificate “Wrap-up” step is performed after the “Basic Certificate

Processing”. As a result of four steps, “Outputs” will be given to the relying party (or the application

using the certificate).

To make this guideline more organized, concise and meaningful to implementers, each main phase of

RFC3280 is described briefly and then three types of explanations are attached. One is for explanation of

concerned rfc3280 phase and another is for the interoperability requirements. And the last one is for

description from the point of IWG Recommended Profile.

2.1.1 Inputs

The algorithm uses seven input values of which they are the certificate path of length n, current

date/time, user-initial-policy-set, trust anchor information and policy related values. Three

police related input values, initial-policy-mapping-inhibit, initial-explicit-policy, initial-any-

policy-inhibit, are used to constrain policy processing.

(a) Additional explanations

(1) The general implementation SHOULD give the user interface with which the relying party

can set the input values. However, the input values can be set in advance according to the

local policy.

(b) Interoperability requirements

(1) For the cross recognition models, the relying parties can have multiple trust anchor

information. And the trust anchor information is delivered as a self-signed certificate. So,

the implementation SHOULD support the methods to import and manage multiple trust

anchor information in a self-signed certificate format.

[IWG Profile Considerations]

l At this time, the special OID anyPolicy and the inhibitAnyPolicy extension is not

used in IWG certificate profile. So, it’s not necessary to support initial-any-policy-

inhibit input value in the implementations. But, considering any enhancement of IWG

Profiles to RFC3280, anyPolicy can be used in the near future so that we recommend

the implementation to have the ability to process anyPolicy related items.

2.1.2 Initialization

This step establishes eleven state variables based upon the seven input values.

valid_policy_tree is the variable that represents the policy information constrained by CAs and

the policy mapping information. Two name -related variables and three policy-related variables

are used to constrain name scope and policy processing respectively. max_path_length variable

is used to check the path length constraint and four more variables are used to verify the

chaining of certificate path.

(a) Additional explanations

(1) valid_policy_tree is the variable which represents the policy information constrained by

CAs. So, it indicates what certificate policies can be used by a subordinate CA, what

certificate policies can be considered equivalent and what qualifiers are given to a

certificate policy.

(2) Two name-related variables, permitted_subtrees and excluded_subtrees, are used to

constrain what names can be used by subordinate CAs. This is important to make the

subject name unique to the subscriber and the naming rules organized.

(b) Interoperability requirements

(1) Not assigned yet

[IWG Profile Considerations]

Not assigned yet

2.1.3 Basic Certificate Processing

This step is performed for each certificate in the path and it includes chain verifications, name

constraint checks and policy processing.

(a) Additional explanations

(1) Name constraint checks for self-issued certificate: A certificate is called the self-issued if

the DNs that appear in the subject and issuer fields are identical and are not empty. Three

types of self-issued certificates can be used for different purposes.

l Distribution of the trust anchor information: Root CA can use self-issued certificates

to distribute the trust anchor information. This is the special case of self-issued

certificate where the private key used to sign the certificate corresponds to the public

key, which is certified within that certificate.

l For the certification of another usage(ex. Timestamp): CA can issue a certificate to

itself for other usage certification. For example, CA can issue a certificate for

timestamp to itself. This certificate can appear as the final certificate of the path and it

is handled as an end entity certificate.

l Key Rollover: Root CA can issue a certificate to itself for key rollover operations.

This certificate can appear as the first (non-final) certificate in the path and it is

temporarily used for Root CA key change. So, it is not a target certificate to validate.

If a Non-final self-issued certificate is the third type of self-issued certificates that are used

for key rollover operations, it is not necessary to check the name scopes for it. But, if a

final self-issued certificate is the second type of self-issued certificates that is used for

other usage, it is necessary to check the name scope for it.

A self-issued certificate for key rollover should not affect the path validation process. And

the certificate policy extensions should have valid policies (anyPolicy or all policies used

by the CA) to make valid_policy_tree not NULL.

(b) Interoperability requirements

(1) GeneralName type used to constrain name scopes SHOULD not use otherName type for

the interoperability. And it is necessary to make a full consideration, when to use

x400Address, ediPartyName and registeredID.

[IWG Profile Considerations]

Inconsistent application of name comparison rules may result in acceptance of invalid targeted

certificates, or rejection of valid ones. The X.500 series of specifications defines rules for

comparing distinguished names. These rules require comparison of strings without regard to

case, character set, multi-character white space substrings, or leading and trailing white space.

The DN String matching rules should follow those matching rules of X.520 and the RDN String

Representation rules should follow those representation rules of rfc2253

2.1.4 Preparation for Next Certificate

For all the intermediate certificates, this step will be performed after “Basic Certificate

Processing” steps. This step includes the procedures such as policy mapping, updating state

variables, key usage checks and path length constraint checks. And any other critical

extensions and recognized non-critical extensions SHOULD be processed.

(a) Additional explanations

(1) Processing policyMapping extensions: If the policy mapping extensions are present in the

certificate i, policy mapping processing is performed according to the types described in

[Table 1]. We will give the procedures for processing policyMapping extensions for each

type using sample certificate paths.

Type
Policy_mapping

state variable
valid_policy of each node of depth i

I greater than 0 matches a CP of issuerDomainPoicy of i certificate

II greater than 0 equals anyPolicy

III 0 -

[Table 1] Types of processing policyMapping extension

l The following is the sample of processing policy mappings when there is a node of

Type I. In processing the sample, the node having valid_policy of C is modified to

have expected_policy_set as D and E according to the policyMapping extension of

the certificate 2.

B, C

False

{}

A

B

False

{}

B

C

False

{}

C

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

O Certificate 1
- CP : {A}
- PolicyMapping : {A=B, A=C}

B, C

False

{}

A

B

False

{}

B

D, E

False

{}

C

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

O Certificate 2
-CP : {B,C}
-PolicyMapping : {C=D, E}

O Initialization

[Figure 2] Processing policy mapping extension (Type I)

l The following is the sample of processing policy mapping when there is a node of

Type II. In processing the sample, because no node of depth 2 has a valid_policy of

A and there is a node of depth 2 with a valid_policy of anyPolicy , new node with the

valid_policy of A will be generated with expected_policy_set as B referencing to

policyMapping extension.

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality

expected_policy_set

Depth
1

Depth
2

O Certificate 1
- CP : {any-policy}

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality

expected_policy_set

Depth
1

Depth
2

O Certificate 2
- CP : {any-policy}
-PolicyMapping : {A=B}

O Initialization

[Figure 3] Processing policy mapping extension (Type II)

l For Type III, delete each node of depth i that has valid_policy appearing in

issuerDomainPoicy of policyMapping extension. After deleting such nodes, repeat

deleting nodes of depth i-1 or less without child node.

(2) The samples of updating name-related state variables: The following is the sample of

updating two state variables, the permitted_subtrees and excluded_subtrees. The scope of

permitted_subtrees variable will be reduced after the intersections with permitted_subtrees

appearing in nameConstraints extension. On the other hand, the scope of

excluded_subtrees variable will be extended after union with excluded_subtrees appearing

in nameConstraints extension. In the sample, the [Name -related state variables 1] is

changed to the [Name -related state variables 2] after processing of nameConstraints

extension of the certificate 2

{abc.com}unboundedURI

emptyunbounded…

empty{C= AA}
directory

Name

emptyunbounded…

excluded
_subtrees

permitted
_subtrees

Name type

{abc.com}unboundedURI

emptyunbounded…

empty{C= AA}
directory

Name

emptyunbounded…

excluded
_subtrees

permitted
_subtrees

Name type

O Certificate 2
- permittedSubtrees : {C = AA, O = A company}
NameType : directoryName

- ExcludedSubtrees : {def.com}
NameType : uniformResourceIdentifier

{abc.com}
{def.com}

unboundedURI

emptyunbounded…

empty
{C= AA,
O = A

company}

directory
Name

emptyunbounded…

excluded
_subtrees

permitted
_subtrees

Name type

{abc.com}
{def.com}

unboundedURI

emptyunbounded…

empty
{C= AA,
O = A

company}

directory
Name

emptyunbounded…

excluded
_subtrees

permitted
_subtrees

Name type

[Name-related state variables 1] [Name-related state variables 2]

[Figure 4] Updating name-related state variables

(b) Interoperability requirements

(1) The implementation SHOULD support the policy mapping procedures so that policy

processing of certificate path including cross certificate could be processed properly.

(2) If it is necessary to use any private extensions in certificate, then such extensions

SHOULD be marked as non-critical for the interoperability between different PKI domains.

(3) When issuing cross certificate, pathLengthConstraint SHOULD be set carefully to avoid

the establishment of unexpected trust relationship and to allow the establishment of

unexpected trust relationship.

[IWG Profile Considerations]

l In the experiment, IWG did not impose the pathLengthConstraint. But when applying

cross certification in real business, we need to pay enough attention to avoid

unexpected extension of trust relationship.

2.1.5 Wrap-up

To complete the certificate path validation, this step is performed for the last certificate after

“Basic Certificate Processing” step. This step includes the procedures such as updating state

variables, calculating the intersection of valid_policy_tree and user-initial-policy-set and all

critical extensions and recognized non-critical extensions will be processed. If explicit_policy

variable is greater than 0 or the intersection of valid_policy_tree and user-initial-policy-set is

not NULL, the path validation process succeeds.

(a) Additional explanations

(1) The samples of calculating the intersections of valid_policy_tree and user-nitial-policy-

set : When valid_policy_tree is not NULL and user-initial-policy-set is not anyPolicy, the

procedure of calculating the intersection is as follows.

l The valid_policy_node_set are the set of policy nodes whose parent nodes have a

valid_policy of anyPolicy. In the following sample, the valid_policy_node_set will be

the set of anyPolicy, A, B and C.

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

B

False

{}

B

B

False

{}

B

C

False

{}

C

Depth
3

*valid_policy_node_set : {any-policy, A, B, C}

O Certificate 1
- CP : {any-policy}

O Certificate 3
- CP : {B, C}

O Certificate 2
- CP : {any-policy}
- PolicyMapping : {A=B}

O Initialization

[Figure 5] Calculating the intersection (1)

l If the valid_policy of any node in the valid_policy_node_set is not among the user-

initial-policy-set and is not anyPolicy, delete this node and all its children as seen in

the following figure.

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

B

False

{}

B

B

False

{}

B

C

False

{}

C

*user_initial-policy-set : { A }
*valid_policy_node_set : {any-policy, A, B, C}

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality

expected_policy_set

Depth
1

Depth
2

B

False

{}

B
Depth

3

O Certificate 1
- CP : {any-policy}

B

False

{}

B

C

False

{}

C

Depth
3

O Certificate 2
- CP : {any-policy}
- PolicyMapping : {A=B}

O Certificate 3
- CP : {B, C}

O Initialization

[Figure 6] Calculating the intersection (2)

l If the valid_policy_tree includes a node of depth n that has the valid_policy of

anyPolicy and the user-initial-policy-set does not contain anyPolicy, generate new

nodes with valid_policy of user-initial-policy-set among which they are not in

valid_policy_node_set and delete the node with valid_policy of anyPolicy. In the

following sample, because there is a node with valid_policy of anyPolicy of the depth

3, new node is generated with valid_policy of C and the node of anyPolicy is deleted.

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

B

False

{}

B

any-policy

False

{}

any-policy Depth
3

any-policy

False

{}

any-policy

any-policy

False

{}

any-policy

B

False

{}

A

any-policy

False

{}

any-policy valid_policy

qualifier_set

criticality
expected_policy_set

Depth
1

Depth
2

B

False

{}

B Depth
3

O Certificate 1
- CP : {any-policy}

*user_initial-policy-set : { A, C }
*valid_policy_node_set : {any-policy, A}

C

False

{}

C

any-policy

False

{}

any-policy

O Certificate 2
- CP : {any-policy}
- PolicyMapping : {A=B}

O Certificate 3
- CP : {any-policy}

O Initialization

[Figure 7] Calculating the intersection (3)

l If there is a node in the valid_policy_tree of depth n-1 or less without any child nodes,

delete that node. Repeat this step until there are no nodes of depth n-1 or less without

children.

(a) Interoperability requirements

(1) Not assigned yet

[IWG Profile Considerations]

Not assigned yet

2.1.6 Output

If the path validation processes were successful, the procedures terminate returning a success

indication together with the final value of the valid_policy_tree, the working_public_key, the

working_public_key_algorithm and the working_public_key_parameters.

(a) Additional explanations

(1) It is not necessary to show the outputs to the user. The outputs will be provided to the

application for the validations of certificates in use.

(b) Interoperability requirements

(1) Not assigned yet

[IWG Profile Considerations]

Not assigned yet

2.2 CRL Validation Algorithm

The CRL validation algorithms are the procedures to check whether the target certificates are revoked or

on hold status when CRL is the revocation mechanism used by the certificate issuer. The following

diagram shows the overall procedure of the CRL validation algorithm.

Start Inputs

• certificate
• use-deltas

• cert_status

Stop Outputs

Initialization

Process CRL
•Obtain the CRL
•Verify issuer and scope
•process reasons
• validate the signature
• search CRL for status

All Reasons or !UNREVOKED
Yes

No

[Figure 8] CRL Validation Flowchart

The diagram shows that the CRL validation algorithm is composed of two basic steps. “Initialization of

Revocation State Variables” step makes use of the variables of “Inputs”. And the revocation status of

target certificates are checked in “CRL Processing” steps. The algorithm output is the revocation status of

the target certificates.

2.2.1 Revocation Inputs

The CRL Validation algorithms take two input values, one is target certificate and the other is

use-deltas. use-deltas indicates whether delta CRLs are applied to CRLs.

(a) Additional explanations

Not assigned yet

(b) Interoperability requirements

(1) Even though delta CRL scheme is used, a full CRL must be generated and published for the

interoperability.

[IWG Profile Considerations]

l At this time, IWG does not use delta CRLs. It is not necessary to support delta CRLs.

And the CAs conformant to IWG profile SHOULD provide full CRLs regardless of

using delta CRLs.

2.2.2 Initialization and Revocation State Variables

This step establishes three state variables. Two reason-related variables contain the set of revocation

reasons supported by the CRLs and delta-CRLs processed so far or currently. And cert_status variable

contains the status of the certificate.

(a) Additional explanations

(1) Not assigned yet

(b) Interoperability requirements

(1) To agree on reason codes to support : It is necessary to agree on reason codes to support

between PKI Domains in the interoperability environments because it’s practical not to

support all reason codes in the rfc documents.

Need to specify which reason codes to support in the interoperability models

[IWG Profile Considerations]

Not assigned yet

2.2.3 CRL Processing

For the purposes to check the status of the target certificates, this phase includes the procedures such as

updating CRLs and delta-CRLs, verifying the issuer and scope of CRLs and dalta-CRLs, comp uting the

set of revocation reasons and determining the status of target certificate.

(a) Additional explanations

(1) Processing reasons: the variable reasons_mask contains the set of revocation reasons

supported by the CRLs and delta-CRLs processed so far. This variable is updated using

interim_reasons_mask that includes the intersections of the reasons in the DP and

onlySomeReasons in IDP CRL extension.

l To compute the interim_reasons_mask.[4]

[Table 2] Compute the interim_reasons_mask

CRL DP->

distributionPoint->reasons

IDP->distributionPoint

->onlySomereasons
interim-reasons-mask

Present Present Intersection

Present Omitted
CRL DP->

distributionPoint->reasons

Omitted Present
IDP->distributionPoint

->onlySomereasons

Omitted Omitted All reasons

l The following sample shows that the reasons_mask is updated with the

interim_reasons_mask : If the interim_reasons_mask includes one or more reasons

that is not included in the reasons_mask, these reasons are included in the

reasons_mask.

0101Value

…Reason 3Reason 2Reason 1
Reason
Code

0101Value

…Reason 3Reason 2Reason 1
Reason
Code

*reason_mask

0010Value

…Reason 3Reason 2Reason 1
Reason
Code

0010Value

…Reason 3Reason 2Reason 1
Reason
Code

*interim_reasons_mask

0111Value

…Reason 3Reason 2Reason 1Reason
Code

0111Value

…Reason 3Reason 2Reason 1Reason
Code

*reason_mask

[Figure 9] Compute the reasons_mask

(2) To verify the scopes of the CRL :

l If CA issues a full CRL and ARL together, the application must be able to distinguish

them. If a full CRL and a full ARL are substituted, perhaps applications will regard

revoked certificate as a valid certificate. So, the applications must check the IDP-

>onlyContainsUserCerts or onlyConstainsCACerts against CRL/ARL substitution-

attack. It is verified by using the basic constraints extension with cA boolen of the

target certificate.

l Also, if CA issues CRLs or ARLs which are partitioned with various separation

mechanisms(reason codes and serial number range of the certificate, etc.), the relying

party S/Ws must confirm that one of the names in the IDP matches one of the names

in the DP to prevent CRL or ARL substitution.

(3) To determine the status of target certificate : According to the reasons_mask and cert_status

state variables, the status of target certificate is determined.

[Table 3] Determine the status of target certificate

Reasons-mask Cert-status State of certificate

All-reasons UNREVOKED Valid

All-reasons Not-UNREVOKED Revoked

Not-All-reason UNREVOKED

The application must retrieve other

ARL/CRL because state of target certificate

is not determined

Not-All-reason Not-UNREVOKED Revoked

(b) Interoperability requirements

(1) Not assigned yet

[IWG Profile Considerations]

l According to the Asia Recommendation Profile, indirect-CRL and delta-CRL is not

used. So, the implementation to support IWG profiles doesn’t have to implement

procedures related to indirect-CRL and delta-CRL

l The applications don’t have to implement procedure related to the reasons_mask and

interim_reasons_mask because CRL or ARL is not separated by the revocation reason

according to the Asia Recommendation Profile.

2.3 Restricted Certificate Path Construction Algorithm

It is difficult to specify a general Certificate Path Construction Algorithm for the various models of

interoperability and Repository. So, this guideline will make assumptions about PKI environment and

describe the Restricted Certificate Path Construction Algorithms based on it.

2.3.1 Assumptions

2.3.1.1 Interoperability Model

(a) Each domain has strict hierarchy

(b) Cross Certification between top level CA’s

2.3.1.2 Repository

RootCA1

RootCA2 RootCA3

CA3CA3 CA3CA3cACertificate

CA3CA2 CA3CA2

CA2CA3 CA2CA3

CA2CA3 CA2CA3

issuedToThisCA

issuedByThisCA

issuedByThisCA

Issuer Subject

CA2CA2 CA2CA2cACertificate

CA2CA3 CA2CA3

CA3CA2 CA3CA2

CA3CA2 CA3CA2

issuedToThisCA

issuedByThisCA

issuedByThisCA

Issuer Subject

CA1CA1 CA1CA1cACertificate

CA1CA2 CA1CA2

CA1CA3 CA1CA3

issuedToThisCA

issuedByThisCA

Issuer Subject

CA4

User 2

User 1

CA5

User 3

CA4CA2 CA4CA2cACertificate

-CA4 -CA4crl

Issuer Subject
-CA3 -CA3arl

-CA2 -CA2arl

-CA2 -CA2crl

CA5CA3 CA5CA3cACertificate

-CA3 -CA3crl

Issuer Subject

-CA3 -CA3arl

[Figure 10] Structure of Directory

For the distribution of certificates and ARL/CRLs, the CA can use any repository mechanisms among

which are Directory, HTTP, Mail and FTP, etc. But, this guideline made the assumptions on using the

LDAPv3 Directory.

(a) Schema: This guideline assumes that the following attributes are used to convey certificates and

ARL/CRL and the distinguished name of an entry equals to the subject of a certificate stored in

that entry.

(1) Root CA entry

l cACertificate : self-sign certificate of this Root CA

l crossCertificatePair : If there are cross certificates related to this Root CA, this

attribute MUST appear and contain those cross certificates.

l authorityRevocationList : If this Root CA issues CA certificates, this attribute MUST

appear and contain an ARL.

l certificateRevocationList : If this Root CA issues user certificates, this attribute

MUST appear and contain a CRL.

(2) Subordinate CA entry

l cACertificate : a certificate of this CA

l authorityRevocationList : If this Root CA issues CA certificates, this attribute MUST

appear and contain an ARL.

l certificateRevocationList : If this Root CA issues user certificates, this attribute

MUST appear and contain a CRL.

2.3.1.3 Certificate/CRL Profiles

(a) Directory Access Information: In order to retrieve certificates and ARL/CRLs, it is assumed

that the relying party accesses its directory. The relying party can obtain the directory access

information from the followings:

(1) AIA extension field in certificates

(2) Directory Access Information managed by the relying party

If the AIA extension is present in a certificate, the relying party can obtain Directory Access

Information from it. If not, the relying party should use the Directory Access Information

locally managed by himself/herself. When a referral or chaining method is used for the

directory, the local directory information will be sufficient to get information from various

directories.

The Directory Access Information for retrieving ARL/CRL can be obtained from the CRL DP

extension. The DP name must be the directoryName or the LDAP URI. When directoryName

used, the relying party is able to get directory server information in other way. When LDAP

URI used without attribute value, the relying party is able to determine the attribute name

using basicConstraints extension.

(b) Key Identifier for Certificate Chain: To facilitate path construction certificates and CRLs

should use AKI and SKI containing Key Identifier.

2.3.2 Certificate Chain Construction

Followings are three methods of how to construct the certificate chains. (The selection is a local policy)

(a) Utilize the certificates provided by the signer

(b) Utilize the certificates already stored locally

(c) Utilize certificates retrieved from the repository

In any PKI domains to which the target certificate belongs, the Forward-Direction method is more

efficient to construct the Certificate Chains than the Reverse-Direction method if each PKI domain is

based on the Strict Hierarchy model. However, it is better to construct the certificate chains in inter-PKI

domains, because the CA can issue a number of cross-certificates to other domain Root CAs.

The Certificate Chain Constructions from a target certificates are as follows.[5][6]

RootCA1

RootCA2 RootCA3

CA3CA3 CA3CA3cACertificate

CA3CA2 CA3CA2

CA2CA3 CA2CA3

CA2CA3 CA2CA3

issuedToThisCA

issuedByThisCA

issuedByThisCA

Issuer Subject

CA2CA2 CA2CA2cACertificate

CA2CA3 CA2CA3

CA3CA2 CA3CA2

CA3CA2 CA3CA2

issuedToThisCA

issuedByThisCA

issuedByThisCA

Issuer Subject

CA1CA1 CA1CA1cACertificate

CA1CA2 CA1CA2

CA1CA3 CA1CA3

issuedToThisCA

issuedToThisCA

Issuer Subject

CA4

User 2

User 1

CA5

User 3

CA4CA2 CA4CA2cACertificate

-CA4 -CA4crl

Issuer Subject
-CA3 -CA3arl

-CA2 -CA2arl

-CA2 -CA2crl

CA5CA3 CA5CA3cACertificate

-CA3 -CA3crl

Issuer Subject

-CA3 -CA3arl

(a) Forward-Direction

(c) Reverse-Direction

(b) Trust Anchor
Check

[Figure 11] Certificate Chain Construction Algorithm

(a) Forward-Direction Method: The relying parties construct the Certificate Chains from target

certificates to self-signed certificate by using Forward-Direction Method. In the case that the

User3 verifies User1’s certificate, the certificate chains to be constructed are like “RootCA2 ->

CA4 -> User1”. It is general to store the Root CA certificates as the attribute of cACertificate in

the RootCA directory . However, the attribute issuedToThisCA field of crossCertificatePair

Attribute may be used to construct Certificate Chain.

(b) Trust Anchor Checks: The relying parties verify that Self-Signed certificate(RootCA2)

constructed through step(a) is included in the trust anchor information of the relying party. If

included, the Certificate Chain Construction Algorithm is closed. If not included, the step(c) is

processed.

(c) Reverse-Direction Method: The relying parties construct the Certificate Chains from cross-

certificate issued by own trust anchor to RootCA2, by using the Reverse-Direction Method. The

attribute of issuedByThisCA field of the crossCertificatePair may be used in Reverse-Direction

Method.

2.3.3 Retrieval of ARL/CRL

Followings are three methods of retrieving ARL/CRL. (The selection is a local policy)

(a) Utilize ARL/ CRL provided by the signer

(b) Utilize ARL/CRL already stored locally

(c) Utilize ARL/CRL retrieved from the repository

In each method, the validity checks, issuer checks and key identifier checks for ARL/CRL SHOULD be

processed in advance for the efficiency of certificate path processing. If CRL DP extension is present in

certificate, the relying party can obtain ARL/CRL based on the CRL DP extension. If not, the relying

party can obtain ARL/CRL from the entry of issuer DN.

2.4 Considerations

In this chapter, some additional considerations for the implementation of certificate path processing that

was not covered above will be covered.

2.4.1 Using VA(Validation Authority)

The some parts of certificate path processing defined in this specification can be delegated to a trusted VA.

Protocols for accessing a VA server must stick to the relevant specification or standards. If the VA server

provides not the whole of the certificate path processing described in this specification, the relying part ies

should process the rest of the certificate path processing. Also, the interfaces should be provided, through

which the relying parties can determine whether to use VA or not.

(a) Interoperability requirements

(1) We recommend using the OCSP protocol for the services of VA.

(2) Though a CA uses only VA as the validation mechanism, the CA MUST support both VA

and CRL mechanisms for the interoperability between PKI domains.

(3) Some requirements using OCSP for VA services:

1. All extensions of OCSP messages SHOULD be non-critical for the

interoperability.

2. The format of nonce extension is not specified clearly in RFC2560, so it

MUST be specified. The implementation using the extension SHOULD handle

all the formats of value appearing in that extension, even though the value is

not DER encoding of some ASN.1 structure.

3. To inform the relying party the location of OCSP service, it is recommended to

use AIA extension(id-ad-ocsp) in the certificate.

*Additional issues for OCSP interoperability

We have the various VA mechanisms such as OCSP, SCVP and DVCS, however, as of today the OCSP

has been used generally to provide the VA service. The OCSP has been implemented to verify the status

of certificates on the 2001 IWG and Korea has the accredited CAs operate the OCSP Server for the

interoperability of financial sections.

This phase explains the additional issues related to the interoperability between different OCSPs

(a) The IETF RFC 2560 OCSP protocols can be customized to meet the various PKI application services.

The private extensions can be added or some particular extensions can be marked as critical or non-

critical, as opposed to the standard. For this reasons, if the OCSPv1 has addit ional extension fields for

various services, these MUST be non-critical for interoperability.

(b) The followings are issues raised when OCSP interoperability test was performed between accredited

CAs in Korea

(1) To prevent replay attacks, the nonce is are generally used. But, the RFC 2560 doesn’t specify the

length and the value type of nonce. So, accredited CAs of Korea agreed as follows

- The value type of nonce is OCTET STRING

- The length of nonce is not limited.

(2) The Relying parties must obtain the access information of the OCSP Server to receive the OCSP

services. It is obtained by the AIA extension of the target certificate according to the RFC 2560. If

the AIA extension in the target certificate is not present, the relying parties have to use the local

DB. In Korea, the AIA extension as well as the local DB are being used and the AIA extension

has priority over the local DB.

3 Reference

[1] W.Ford and D.Sole, "Internet X.509 Public Key Infrastructure Certificate and CRL Profile", IETF

PKIX RFC3280, April 2002

[2] “Achieving PKI Interoperability”, JKS-IWG, April 2002

[3] “Achieving PKI Interoperabiltiy- Recommendations on Technical Certificate Profile”, JKS-IWG,

April 2002

[4] Russ Housley and Tim Polk, "Planning for PKI", WILEY, 2001

[5] ITU-T Recommendation X.509, “Information Technology-Open Systems Interconnection-The

Directory : Public Key and Attribute Certificate Frameworks", March 2000

[6] Steve Llody, "Understanding Certification Path Construction", PKI Forum White Paper, September

2002

